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STOCHASTIC SIMULATION ALGORITHM FOR EFFECTIVE

SPREADING DYNAMICS ON TIME-EVOLVING ADAPTIVE

NETWORX (SSATAN-X)∗

Nadezhda Malysheva1,2,3 , Junyu Wang3 and Max von Kleist2,3,**

Abstract. Modelling and simulating of pathogen spreading has been proven crucial to inform con-
tainment strategies, as well as cost-effectiveness calculations. Pathogen spreading is often modelled as
a stochastic process that is driven by pathogen exposure on time-evolving contact networks. In adap-
tive networks, the spreading process depends not only on the dynamics of a contact network, but vice
versa, infection dynamics may alter risk behavior and thus feed back onto contact dynamics, leading
to emergent complex dynamics. However, numerically exact stochastic simulation of such processes via
the Gillespie algorithm is currently computationally prohibitive. On the other hand, frequently used
‘parallel updating schemes’ may be computationally fast, but can lead to incorrect simulation results.
To overcome this computational bottleneck, we propose SSATAN-X. The key idea of this algorithm is to
only capture contact dynamics at time-points relevant to the spreading process. We demonstrate that
the statistics of the contact- and spreading process are accurate, while achieving ∼100 fold speed-up
over exact stochastic simulation. SSATAN-X’s performance increases further when contact dynamics
are fast in relation to the spreading process, as applicable to most infectious diseases. We envision that
SSATAN-X may extend the scope of analysis of pathogen spreading on adaptive networks. Moreover,
it may serve to create benchmark data sets to validate novel numerical approaches for simulation, or
for the data-driven analysis of the spreading dynamics on adaptive networks.
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1. Introduction

Modelling and simulation of contagion spreading to forecast disease prevalence and to assess different public
health interventions has a long history in mathematical biology [38]: Traditional approaches involve compartmen-
tal models, such as susceptible-infectious-recovered (SIR) or susceptible-infected-susceptible (SIS) [7]. However,
traditional compartmental models do not capture relevant spreading paths and may even provide incorrect pre-
dictions [37]. Network models incorporate more realism, explicitly considering interactions (i.e. edges) between
individuals and locations (i.e. nodes). Within this context, mostly static networks have been studied in the
past [46, 49]. However, in static networks, the extent of linkage of nodes is determined only after integrating
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information derived from observing the contact (or spreading) process over a period of time. Several examples
highlight that analysis of static networks lacks important temporal information about causal paths that underlie
the spreading process, consequently yielding false conclusions for the control of the spreading process [32]. In
order to capture the temporal causality of the underlying system, different time-evolving network models have
been introduced recently [33, 39]. Some of these approaches, in particular multi-agent-based models (ABM)
may even consider spatio-temporal movement driven by undirected- [47] or directed dynamics [12]. In these
approaches, agents are typically deemed ‘in contact’ when they are in close physical proximity. Hence, the spa-
tial dynamics are used to define the evolution of a temporal contact network. A particularly relevant extension
to model spreading on contact networks is the inclusion of adaptive behaviour [54], which defines the class of
adaptive networks. In this class of network models, the dynamical rules that shape the network structure change
in response to the dynamics of the spreading process [27, 28]. Examples are the concurrency of sexual partner-
ships which is thought to be important for HIV spread [25, 40, 41] or measures of self-isolation (quarantine) for
individuals diagnosed with SARS-CoV-2. This creates a feedback loop between the spreading dynamics on the
network and the dynamics of the network itself, leading to emergent complex behaviour. Epidemic spreading
has been extensively studied on these types of networks to understand the influence of social contact structure
on disease prevalence [4, 22, 36, 50]. However, the dynamics of contagion spreading on adaptive networks are
usually complex, and analytical results can only be obtained in special cases [21, 50]. This makes numerical
studies based on stochastic simulations indispensable.

Several different approaches are available to date: The stochastic simulation algorithm (SSA) [23] allows for
the exact numerical simulation of contagion spreading on adaptive networks, as used in [5, 11, 34]. Ready-
to-use implementations are available in the network modelling packages Largenet2 [61] and EpiFire [31]. A
major drawback of the SSA is that it may generate computational overhead, when the contact dynamics are
considerably faster than the contagion dynamics, i.e. if only a tiny fraction of contacts result in contagion
transmission. While the per-contact transmission probability can be of the order 10−1 for some airborne diseases
like influenza [44], it is usually much lower in sexually transmitted diseases like HIV (order 10−3−10−2) [6, 52].
The computational overhead becomes even more pronounced, when the outcome of intervention strategies, like
face masks, vaccination, prophylaxis or ‘treatment as prevention’ are studied which further lower the per-contact
contagion transmission probability [15–18].

Two types of algorithms are used in this context: (i) Inexact methods discretize the time and then perform
parallel updates of the contact structure and the contagion spreading (akin to a tau-leaping procedure in systems
biology [9, 24]). Time discretization and synchronous updates are implemented in EpiModel [35], NepidemiX1

and CovaSim [39]. (ii) The method proposed by Vestergaard [57] borrows ideas from the ‘integral method’ orig-
inally proposed and applied in the Systems Biology field [1]. It assumes deterministic contact dynamics, e.g. in
Vestergaard [57], a temporal set of static contact configurations is used. If the contact dynamics would in fact be
deterministic for the given time intervals, the method then estimates the exact time to the next spreading event.
However, in Vestergaard’s original implementation the underlying contact network is not adaptive any longer;
i.e., the network configurations affect the spreading dynamics, but not vice versa. Therefore, this approach is
limited to particular scenarios, in which human behaviour is not adapted as the pandemic unfolds, in contrast
to what is currently observed for, e.g. the SARS-CoV-2 or monkey pox outbreak.

In this article, we develop an efficient and exact stochastic simulation method that allows to predict contagion
spreading in the case when both the contact dynamics, as well as the spreading dynamics, are governed by
inter-dependent stochastic processes, i.e. human behaviour is adapted as a function of the epidemic process.
The algorithm is written in C++ and available through https://github.com/nmalysheva/SSATAN-X.

2. Materials and methods

2.1. Model: spreading process on an adaptive contact network

In the following, we introduce the proposed simulation algorithm using an example of a simple spreading
process that evolves on a time-dependent, adaptive contact network. The running example will involve adaptivity

1http://nepidemix.irmacs.sfu.ca/

https://github.com/nmalysheva/SSATAN-X
http://nepidemix.irmacs.sfu.ca/
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in the form of discontinuous re-wiring dynamics as a numerically hard problem that is meant to test the
proposed algorithm (SSATAN-X). Application of the proposed algorithm to other types of networks (Fig. 1:
static, temporal or numerically easier to treat adaptive networks) are exemplified in the Discussion.

Consider a population Ω = {S, I,D} that consists of susceptible- S, infected- I and diagnosed individuals
D. Each of these individuals has a number of contacts that change over time. Infection (e.g. transmission of
a virus) is possible from an infected to a susceptible, or from a diagnosed to a susceptible individual, only if
the respective individuals are in contact. For an airborne pathogen, e.g. influenza or SARS-CoV2, a ’contact’
denotes a period of time where individuals are in close proximity (e.g. within the same room), whereas for
sexually transmitted infections it denotes a sexual relationship.

The contacts change over time. To describe the contact dynamics of the model, each individual is assigned
rates of gaining and loosing contacts over time.

Moreover, in case the individual is diagnosed with the infection, he/she may become aware of his/her status,
which affects the individual’s behaviour. In the modelling example, this is where we include the (discontin-
uous) adaptive behaviour. In our model, the individual cuts all of his/her contacts, and the individual rate
of establishing new contact drops to 30% of its pre-diagnosis value. Thus, this simple model describes adap-
tive dynamics, where the contact dynamics change depending on the epidemic state in a discontinous fashion,
Figure 1C.

The presented model can be described as an undirected weighted temporal Contact Network G(t) =
{E(t), V (t)}, where

– V denotes the set of nodes {v1(t), v2(t), ..., vN (t)} ∈ Ω (the infected, diagnosed and susceptible
individuals).
Each node vi ∈ V has the following individual characteristics: (i) a rate at which a new contact is made
λ+i and (ii) a rate of loosing an existing contact λ−i .

– The set of edges is denoted E(t) = {ejk(t)} with ejk = (vj , vk; γ), j 6= k, if vj and vk are in contact.
Parameter γ represents the transmission rate from j to k, which is greater zero if node j is infected or
diagnosed and node k is susceptible and otherwise equal zero.

We consider a continuous-time Markov process that evolves the contact network G(t) in time. The possible
events that can occur on the network can be classified into two main groups:

1. Contact dynamics R = {rjk}:
� Assembling of a new contact. In our example, for each pair of nodes (vj , vk), j 6= k which is not connected

by an edge, the rate of assembling an edge is defined by λ+jk = λ+j · λ
+
k i.e. product of the assembling

rates of the two nodes.
� Disassembling of an existing contact. For each pair of nodes (vj , vk), j 6= k that are connected by an

edge, the rate of disassembling is defined as λ−jk = λ−j · λ
−
k i.e. the product of the disassembling rates of

the two nodes.
2. Epidemic dynamics A = {a`}:

� An infection emanating from an undiagnosed, infected individual Ij + Sk
γ−−→ Ij + INI+1 occurs with

rate γ greater zero if node j and k are connected.

� An infection emanating from a diagnosed individual Di + Sk
γ/2−−→ Di + INI+1 occurs with rate γ/2

greater zero if node j and k are connected.

� An infected individual may be diagnosed with the infection Ij
δ−−→ DND+1, for all j = 1...NI .

� Individuals may die:

Ij
β−−→ ∅, for all j = 1...NI

Di
β−−→ ∅, for all i = 1...ND

In many applications, we are only interested in the epidemic dynamics, e.g. to quantify the effect of particular
epidemic control measures, such as contact restrictions or other behavioral changes, on the infection incidence.
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Figure 1. Methods for simulating spreading processes on networks. We consider two
processes Y |Z : E → E and Z|Y : V → V . The first process Y |Z affects the edges E of the
network (topology, contact dynamics), while the second process Z|Y affects the state of the
nodes V (epidemic dynamics). A-C. Different approaches for modelling spreading processes
on networks. A. In static network approaches, the network topology E, which determines the
linkage and thus the spreading process Z, remains fixed. B. In temporal networks, the network
topology evolves according to some contact dynamics Y : E → E, which is independent of
the epidemic dynamics Z|Y . C. Adaptive networks denote a class of co-evolving stochastic
processes, where both the contact structure affects the spreading process Z|Y , and the spreading
process alters the contact dynamics Y |Z. D. Exact stochastic simulation [23] of spreading
processes on adaptive networks. In the stochastic simulation algorithm, every change to the
network is explicitly modelled, including changes in the edges/topology, as well as changes to
the state of the nodes (empty circles vs. filled red circles). E. Proposed method: The proposed
method only considers the net effect of topological changes on the epidemic dynamics. An
upper bound BL is computed such that BL ≥

∑
j∈Z aj(V,E), and the network topology is bulk

updated for the time step ∆(BL) ∼ exp (BL) using τ -leaping. A change to the state of the
nodes (epidemic process) is conducted if r ≤ a0,Z/BL; r ∼ U(0, 1) and a0,Z =

∑
j∈Z aj(V,E).
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However, the transmission dynamics directly depend on the dynamics of the contact process. Moreover, an
important characteristic of any adaptive network is that not only the contact dynamics affect the spreading
process, but also vice versa (Fig. 1C). I.e. in the example above, the rate λ+i and number of contacts of the
individual depends on the actual state of node i. In our example, we will sample λ+i (t) (1/day) and decrease
it by a factor in case of a diagnosis. Moreover, all existing contacts are lost upon diagnosis. However, any
time-dependent function is in principle possible (see Discussion). However, we chose these (numerically hard to
treat) discontinuous changes to put the proposed algorithm to the test.

2.2. Simulation of spreading dynamics with SSA

The presented model can now be evolved using the stochastic simulation algorithm (SSA), Figure 1D. The
SSA would sample the time to the next event, which could either be an event that relates to the contact dynamics,
or an event that relates to the epidemic dynamics as outlined in Algorithm 1. If the main interest is in assessing

Algorithm 1: SSA

initialize: Network G(t), reaction rate functions r ∈ R, a ∈ A, final time TF
1 t = 0
2 while t < TF do
3 Compute reaction propensities r(·,·) and a(·) based on the current contact network G(t)
4 Compute the sum of the reactions propensities
5 r0 =

∑
rjk

6 a0 =
∑
a`

7 ∆t ∼ Exp (a0 + r0)
8 Choose the next reaction, e.g. a contact dynamics reaction with probability:

9
rjk

r0 + a0
,

10 or an epidemic dynamics with probability:

11
a`

r0 + a0
.

12 Execute chosen reaction
13 t = t+ ∆t

14 end

the epidemic dynamics, this approach would create considerable computational overhead, particularly if the
contact dynamics are considerable faster than the epidemic dynamics (since only few contacts lead to infection,
the contact dynamics are always faster than the epidemic dynamics).

In the following, we will present an algorithm that is able to precisely sample the time to the next infec-
tion event, while performing bulk updates on the contact dynamics. Notably, the bulk updates preserve all
statistical properties of the contact dynamics that are relevant to the spreading process (epidemic dynamics).
Hence, the algorithm allows to study the relevant dynamics at full resolution, while reducing computational
burden.

2.3. Effective simulation of spreading dynamics with SSATAN-X

In the proposed algorithm, we are splitting the above described stochastic process into a process Y comprising
all reactions R belonging to the contact dynamics and a process Z that is driven by reactions A (epidemic
dynamics). We then leap-forward the contact process (Fig. 1E), until a reaction of the epidemic process happens
(Algorithm 2). Algorithm 2 implements the core idea of SSATAN-X and is an adaptation of the EXTRANDE
method proposed by Voliotis in the context of Systems Biology [58].
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The original EXTRANDE algorithm was proposed for simulating “well-stirred” chemical systems, where
each chemical particle (‘agent’) can interact with any other ‘agent’. Our contributions involve the transfer of
the algorithmic ideas to an evolving, sparse dynamical contact network that determines which agents are in
contact with one another at any given time. Our contributions to enabling the application of EXTRANDE to
aforementioned systems are fourfold: (i) We prove that EXTRANDE is an exact algorithm. (ii) We provide
a method to calculate the (contact-structure dependent) upper bound for the epidemic dynamics, which is
necessary for the exactness of EXTRANDE in simulating spreading processes on adaptive networks. (iii) We
introduce a concept, that combines both EXTRANDE and bulk updating of the contact dynamics to enable
computational efficient simulation of such systems. (iv) We adapt the algorithm to adhere to constraints imposed
by actual contact networks (e.g. the number of contacts that can be formed and dissolve over time).

Algorithm 2: SSATAN-X envelope algorithm for simulating effective spreading dynamics on adaptive
networks.
initialize: Network G(t), epidemic reaction functions a ∈ A, final time TF

1 t = 0

2 repeat
3 Define look-ahead time TL = TF − t
4 Define propensity upper bound BTL as proposed in Appendix S2:
5 Sample ∆t ∼ Exp (BTL)
6 if ∆t > TL then

/* reject */

7 t = t+ TL
8 else
9 Bulk update the edges of G(t) for time interval [t, t+ ∆t] using Algorithm 3

10 t = t+ ∆t
11 Compute epidemic reaction propensities a` based on the current network G(t);
12 Compute a0 =

∑
a`

13 Sample u ∼ U(0, 1)
14 if a0 ≥ BTL · u then

/* accept: */

15 Choose the `-th reaction with probability
a`
BTL

16 Execute chosen reaction
17 Execute adaptivity step if required

18 else
/* thin: network remains the same */

19 end

20 end

21 until t ≥ TF

In the outline of the algorithm, line 3 defines the so-called Look-ahead time TL, for which an upper bound
of the sum of propensity functions of the epidemic dynamics BTL for the network G(s) ; s ∈ [t ; t + TL] is
calculated. In Appendix S1 we proof that the algorithm is exact, if BTL ≥ a0(s) exists. According to [58] the
look-ahead time horizon can safely be chosen as TL = TF − t.

Correspondingly, for TL, the upper bound BTL of the sum of reaction propensities of the epidemic dynamics
is calculated in line 4.

Note that the parameter BTL defines an upper bound for the sum of all reactions propensities of A (epidemic
dynamics) within the interval [t, t+ TL]. It is therefore model-specific.
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In our example, the set of reactions A consists of the transmission- (S → I), diagnosis- (D) and death
reactions (∅). Therefore, we can define

BTL = BS→I,TL +BD,TL +B∅,TL .

BD,TL and B∅,TL can be estimated straightforward as BD,TL =
∑
i δi∈I and B∅,TL =

∑
i∈I βi +

∑
j∈D βj . The

upper bound BS→I,TL on the other hand depends on the amount of edges eligible for pathogen transmission,
i.e. the number of S-I and S-D edges. In order to estimate the upper bound for the transmission rate, it is
necessary to estimate the maximum possible number of edges/contacts that can lead to a transmission during
the look-ahead time s ∈ [t ; t + TL]. As can be imagined, a large upper bound will result in many “thinning”
reactions, which can make the algorithm inefficient. In Appendix S2, we provide a general procedure to calculate
BTL and a tailored method to calculate a tight upper bound for the considered model. With respect to the upper
bound BTL we can propose the time to the next epidemic reaction, ∆t (line 5). Notably, since BTL is an upper
bound for the sum of the epidemic reactions a0(s) for network G(s) ; s ∈ [t ; t+ TL], the proposed time to the
next reaction might be shorter than the actual time to the next reaction event. This apparent under-estimation
is “corrected” by the “thinning” step (lines 18–19), such that the statistics of the process are being preserved
(for details refer to [58] and for the proof to Appendix S1). When the proposed time step ∆t lies within the
look-ahead horizon TL, time t is updated by ∆t (line 10). At this point, the actual propensity functions a`
need to be updated. In order to do so, the contact dynamics (edges) of the network G(t) are bulk-updated
using Algorithm 3 (tau-leaping)(line 9) and the next reaction to update (or “thin” ) the state of the nodes
(epidemic process) is chosen (lines 13–19). Here, the adaptivity step (line 17) refers to any drastic changes
to the contact network, when an epidemic reactions occurs. In our example, a diagnosed individual breaks all
his/her contacts. The bulk-update (line 9) allows us to avoid the unnecessary computation of each individual
contact update by reactions R of the contact process.

2.3.1. Bulk update of contact network

The bulk-updating algorithm is based on the τ -leaping algorithm, which was originally proposed by Cao and
Gillespie [9] and was later modified by Anderson [2] by incorporating post-leap checks to guarantee accuracy.

We use the bulk-update algorithm only for reactions R of the contact dynamics. A key adaptation is to
consider all reaction of one type ξ ∈ {+,−} (addition or deletion of edges) simultaneously. In the network
example, only two types of reactions change the contact structure of the network: R+ = {r+jk} denotes the set

of reactions that generate new edges {vj , vk}, j 6= k with rate λ+j λ
+
k , whereas R− = {r−jk} denotes the reactions

that eliminate existing edges {vj , vk}, j 6= k with rate λ−j λ
−
k . Hence, we have R = (R+,R−).

For a bulk network update, there is a limitation of how many edge ’addition’ and ’deletion’ reactions can
be executed: The number of edges available for deletion is limited by the number of edges existing in the
network |E(t)| at time t. In total, the number of edges that exist in a network cannot exceed N(N − 1)/2
for a finite population of N individuals. Therefore, the number of edges available for addition is limited by
N(N − 1)/2− |E(t)|, which can be readily computed by considering a complement network.

We denote a contact graph (network) G = {E, V }, as well as its complement graph G′ = {E′, V ′}. To
accurately capture the contact dynamics, we store both these graphs. The contact graph defines its complement:
i.e., a deletion of an edge in the contact graph is accompanied by the addition of the same edge in the complement
graph. The use of these data structures allows to apply less complex search algorithms to correctly simulate
the contact dynamics. Adding an edge to G will be complemented by deleting this edge from G′ and vice
versa. Thus, we can describe the reactions of assembling and disassembling edges by the following first order
reactions:

Edge addition: If reaction r+jk fires with rate e′jk · λ
+
j · λ

+
k , set e′jk = 0 and ejk = 1.
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Algorithm 3: τ -leaping for bulk-updating the contact network

initialize: Network G(t), contact dynamics reaction functions r ∈ R, final time TF , 0 < p < p∗ < 1 and
0 < q < 1. q∗ > 1, ε < 1

1 Set Qξ = Cξ = 0 , Sξ = [0, 0], t = 0

2 Calculate propensities rξ(·,·) and for each reaction type ξ = {+,−} based on the current network state

G(t). Compute rξ0 =
∑
rξjk, as well as r0 =

∑
ξ r

ξ
0; Calculate τ according to equation (2.1)

3 while t < TF do
4 τ = min(τ, TF − t)

5 if τ <
10

r0
then

6 Execute SSA 100 times
7 Return to line 2
8 else
9 for ξ do

10 Bξ = number of rows in Sξ

11 if rξ0τ +Qξ ≥ Sξ[Bξ, 1] then

12 Mξ∼P(rξ0τ +Qξ − Sξ[Bξ, 1]) + Sξ[Bξ, 2]− Cξ
13 rowξ = Bξ

14 else

15 Find Kξ such that Sξ[Kξ − 1, 1] ≤ rξ0τ +Qξ < Sξ[Kξ, 1]

16 u =
rξ0τ+Q

ξ−Sξ[Kξ−1,1]
Sξ[Kξ,1]−Sξ[Kξ−1,1]

17 Mξ∼B(Sξ[Kξ, 2]− Sξ[Kξ − 1, 2], u) + Sξ[Kξ − 1, 2]− Cξ
18 rowξ = Kξ − 1
19 end
20 end
21 if leap conditions equation (2.4) holds then
22 for ξ do
23 Delete all rows from Sξ less than or equal to rowξ

24 Add new first row [rξ0τ +Qξ, Cξ +Mξ]

25 Qξ = Qξ + rξ0τ

26 Cξ = Cξ +Mξ

27 end
28 t = t+ τ
29 if leap would have failed the leap condition for ε′ = 0.75ε then
30 τ = τp∗

31 else
32 Set τ = τ q if t < 1 and otherwise τ = τ q

∗

33 end

34 Bulk-update network by executing Mξ reactions using Algorithm 4

35 Recalculate rξ(k,l), r
ξ
0 and r0 based on updated network state

36 else
37 for ξ do

38 Add row [rξ0τ +Qξ, Cξ +Mξ] between rowξ and rowξ + 1
39 end
40 τ = τp
41 end
42 end
43 end
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Edge elimination: If reaction r−jk fires with rate ejk · λ−j · λ
−
k , set ejk = 0 and e′jk = 1,

where ejk ∈ E ∈ G and e′jk ∈ E′ ∈ G′.
τ-leaping with post-leap checks. Algorithm 3 describes the τ -leaping algorithm, modified for bulk-

updating of the contact dynamics of the network. Besides the contact graph G(t), the contact dynamics reactions
and the time horizon, the algorithm requires a few design parameters p, p∗, q and ε that can, in principle, take
many values. We used the optimal values derived in [2, 9], e.g. we set p = 0.75, p∗ = 0.9, q = 0.98, ε = 0.03 and
q∗ = 1.02.

Based on the initial state of the system, the time step of the leap τ is calculated (line 2) based on the
following formulas:

τ = min

{
max(ε|E|, 1)

|µE |
,

(
max(ε|E|, 1)

)2
σ2
E

,
max(ε|E′|, 1)

|µE′ |
,

(
max(ε|E′|, 1)

)2
σ2
E′

}
(2.1)

where |E|, |E′| denote the number of edges in the contact network and its complement graph and ε = 0.03 is
a design parameter. The expected net change to the network graph, as well as the complement graph is given
by:

µE = −r−0 + r+0

µE′ = −r+0 + r−0
(2.2)

where r
+/−
0 denote the sum of reaction propensities for addition and deletion respectively at the current network

state G(t). The variance of the net change is given by

σ2
E = σ2

E′ = r−0 + r+0 , (2.3)

because both addition and deletion reactions are first-order reactions in the contact network and its complement

graph. If the chosen τ is less than the value of
10

r0
, we abandon the leaping algorithm and execute a fixed amount

of steps using the SSA algorithm (usually taken to be 100 [24] lines 5–7). Otherwise, for each reaction type, the
number of executions Mξ is sampled (lines 9–19), either from a Poisson distribution (line 12) or a Binomial
distribution (line 17). If the leap is accepted (line 21) with condition

|E(t+ τ)| − |E(t)| ≤ max(ε|E(t)|, 1)

|E′(t+ τ)| − |E′(t)| ≤ max(ε|E′(t)|, 1),
(2.4)

the time t is increased by τ (line 28), storage variables Qξ, Sξ and Cξ are updated (lines 22–27) and τ is
updated (lines 29–33). The bulk update (line 34) is performed with respect to values of Mξ as outlined in
Algorithm 4.
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If the leap is rejected, the sampled values are stored (lines 36–41) and τ is decreased by multiplying it with
probability p. The algorithm returns to line 4.

Algorithm 4: Bulk Update

1 Calculate the cumulative sums ς+ and ς− for reaction types ξ ∈ {+,−}. Permute M− reactions that
eliminate an edge and M+ reactions that create an edge and save the order in the vector O

2 for each contact update in O do
3 Sample u ∼ U(0, 1)
4 if deletion then
5 set r−0 to the last element in ς−

6 Find first y such as:∑y
i=1 ς

−
i ≥ u · r

−
0

7 Remove edge ejk corresponding to index y from the network and remove the corresponding
element from ς−

8 Calculate tmp = r+jk+ value of last element in ς+

9 append tmp to ς+

10 else if addition then
11 r+0 = ς+ς+.length
12 Find first y such as:∑y

i=1 ς
+
i ≥ u · r

+
0

13 Add edge ejk corresponding to index y to the network and remove the element from ς+

14 Calculate tmp = r−jk+ value of last element in ς−

15 append tmp to ς−

16 end

2.4. Implementation and availability

We implemented the algorithm in C++ using an object-oriented approach. The contact network was
implemented with the LEMON Graph library2.

All codes are available from https://github.com/nmalysheva/SSATAN-X.

3. Results

Unless otherwise stated, in this section we will generally use the following setup: We initialized the population
with 200 nodes {S = 180, I = 20, D = 0} and an initial amount of 3000 edges. Each node j was assigned
a parameter λ+j for establishing a new contact and a parameter λ−j for loosing an existing contact. These
parameters were drawn from uniform distributions within the range (0.5, 2.5) and (0.4, 2.0) respectively. For
the epidemic dynamics, the transmission rate along an S-I edge (contact) was set to γ = 0.04 and it was set
to γ/2 along an S-D edge. The death rate of infected and diagnosed individuals was set to β = 0.08 and for
susceptibles it was set to β = 0. The diagnosis rate was set to δ = 0.5. In case of a diagnosis event, where the
infected individual is becoming aware of his/her status, the newly diagnosed individual cuts all contacts and
the individual’s rate of establishing new contact drops to 30% of the pre-diagnosis level.

We performed 103 simulations of SSA, SSATAN-X or parallel updating (PU) in time interval t ∈ [0, 5].

3.1. SSATAN-X accurately captures contact network dynamics

In order to analyse the accuracy and performance of SSATAN-X, we first evaluated simulations with pure
contact dynamics.

2https://lemon.cs.elte.hu/trac/lemon

https://github.com/nmalysheva/SSATAN-X
https://lemon.cs.elte.hu/trac/lemon
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Figure 2. Edge activity plot. Edges of the network depicted in the order of appearance.
Each edge is drawn as a bar for the duration of its existence. A. SSA captures every single
event (deletion or addition of an edge) individually, resulting in very small time steps. B. The
bulk-updating in SSATAN-X allows to create and/or delete several edges using larger time
steps, while maintaining the correct statistics at these discrete time steps.

Whereas the exact stochastic simulation algorithm (Algorithm 1) conducts changes to the contact dynamics
network one-by-one, as illustrated in Figure 2 (left), SSATAN-X uses bulk updates of the contact network, as
described in Algorithm 3 and shown in Figure 2 (right). We remind that the main principle of SSATAN-X is
that it accurately captures the statistics of the contact dynamics that is relevant to modelling the epidemic
dynamics. Therefore, the statistics of the contact dynamics only need to be accurate at the time point when a
bulk update is performed, but not in between bulk updates (Fig. 2, right).

To assess the accuracy of SSATAN-X in capturing the statistics of the contact dynamics, we first ran pure
contact dynamics simulations, i.e. in which no epidemic transitions occur; a` = 0 for all epidemic reactions `.

Figure 3 shows the degree distribution (mean ± standard deviation) of the contact network at different time
points using SSA vs. SSATAN-X respectively. The simulation starts with a deterministic initial network, as
can be seen by the absence of the shaded areas in Figure 3A. During simulation, the degree distribution of the
temporal network changes (Fig. 3B–D), until it reaches a stable distribution (Fig. 3E–F). During the entire
simulation interval, both the mean degree distribution (solid blue vs. dashed red lines), as well as the standard
deviations (blue and red shading) remain visually indistinguishable between the two algorithms.

To further quantify the differences between the evolving contact network over time, we computed the statistics
of the Kolmogorov-Smirnov test, as shown in Figure 4A–B. As can be seen in Figure 4A, the probability that
the degree distributions generated with the SSA vs. SSANTAN-X are identical is much bigger than 0.95 (P -
value) for all time points. The test statistic of the Kolmogorov-Smirnov test (distance between the respective
ECDFs) is shown in Figure 4B. The test statistic remained below the value of 0.0015 at all time points, further
highlighting that differences in the degree distribution are insignificant.

We hence conclude that the bulk-updating (Algorithm 3) of the contact network dynamics, as implemented
in SSATAN-X, accurately captures the statistics of the time-evolving contact network at the discrete time steps.

Next, we evaluate whether the SSATAN-X also accurately captures epidemic dynamics that unfold on an
adaptive contact network.
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Figure 3. Degree distributions during simulation. The graphic depicts the mean degree
distribution of the network during distinct time points within the simulation time (t ∈ [0, 5]).
The dashed red and solid blue lines represent mean degree distribution over 103 simulations
using the SSA and SSATAN-X respectively. Shaded areas represent the corresponding standard
deviations for the 103 simulations.

3.2. SSATAN-X accurately captures epidemic dynamics

In Appendix S1, we prove that Algorithm 2 is exact for simulating the epidemic dynamics if an upper bound
BTL for the sum of propensities of the epidemic dynamics a`(s) s ∈ [t, t+ TL] exists. In this section we present
the results of the SSATAN-X algorithm applied to the adaptive susceptible-infected-diagnosed (SID) network
model described in the Methods section.

Foremost, we were interested to see whether the statistics of the times to the next epidemic event were
correct, as proposed in Figure 1D-E. In Figure 5, we show a histogram of the time-steps to the next epidemic
event (infection, diagnosis, death) for the SSA (orange bars), as well as SSATAN-X (blue bars). As can be
seen, both algorithms yield indistinguishable statistics regarding the epidemic inter-event times. This reaffirms
the correctness of the proposed algorithm in being able to modelling the net effect of contact dynamics on the
spreading process. Figure 6 shows the corresponding simulation results for the epidemic dynamics. The mean
(± standard deviation) number of susceptible, infected and diagnosed are shown in Figure 6A–C respectively.
Both the mean and the standard deviation are indistinguishable when comparing simulations with the SSA (red
line and red shading) vs. SSATAN-X (blue line and blue shading) over the entire duration of the simulation.
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Figure 4. Statistical assessment of differences in the simulated contact network.
We used the Kolmogorov-Smirnov test to compare the degree distributions obtained by SSA
and SSATAN-X (represented on Fig. 3). A. The P -value denotes the probability that the two
degree distributions derived from SSA- and SSATAN-X simulations respectively are identical.
B. Statistics of the Kolmogorov-Smirnov test (KST), representing the distance between the
two empirical cumulative distribution functions.

Therefore, we can further confirm the correctness of SSATAN-X in simulating epidemic dynamics on an adaptive
contact network.

3.3. Impact of contact network adaptivity on the epidemic dynamics

The analysed S-I-D model (Methods section), belongs to the class of adaptive network models, because not
only do the contact dynamics affect the epidemic dynamics, but vice versa, the epidemic dynamics also feed
back onto the contact dynamics (compare Fig. 1C). Specifically, in the utilized model, the epidemic event of
diagnosis changes both the contact network itself (cutting all edges of a newly diagnosed individual), but also
its further dynamics (the rate of establishing new contacts drops to 30%).

To investigate the effect of adaptivity on the epidemic, as well as the contact dynamics, we consider two
representative examples of the contact network model. For the first of the examples we set the diagnosis rate to
δ = 0, in other words, in this example we have a non-adaptive temporal network model (described in Fig. 1B).
For the adaptive model (second example), we set the diagnosis rate to δ = 0.5. In both examples, we set
the transmission rate γ to 0.004. Adaptivity in the second example is implemented in the following way: The
diagnosis event of an infected individual causes a complete rewiring of the individuals’ contact network. The
individual looses all contacts upon diagnosis and subsequently has a decreased rate of making new contacts,
i.e. λ+j,diag = 0.3 · λ+j,undiag, where the subscripts ’diag’ and ’undiag’ refer to the individual being diagnosed
and undiagnosed with the infection respectively. The transmission rate γ remains unchanged. Also, for both
examples we set the death rate to β = 0. This allows to investigate the impact of adaptivity on the epidemic
and contact dynamics, without the impact of other factors.

Figure 7A shows the number of edges in the network that are eligible for transmission in the non-adaptive
temporal network (δ = 0; blue error bars), vs. the adaptive network (δ = 0.5; orange error bars). Annotations
show the percent of infected individuals that are diagnosed (e.g. D/(D+I)). Figure 7B compares infection
dynamics of both, the non-adaptive and adaptive model (blue vs. orange error bars). As can be seen, the
diagnosis event alters the epidemic dynamics in the sense that less new infections occur in the adaptive network.
In particular, since we set up the simulations in such way that the transmission rates emanating from both
infected and diagnosed were identical, the decrease in infection dynamics can be solely attributed to alterations
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Figure 5. Time-step to the next epidemic event. The histogram depicts the frequency
of the time-step sizes to the next epidemic event (infection, diagnosis or death), produced from
103 simulations for each algorithm and normalized over the number of samples (overall 79375
epidemic time steps for SSATAN-X (blue bars) and 79025 for SSA (orange bars)).

in the contact dynamics in the adaptive networks (Fig. 7A), which then feed back onto the epidemic dynamics.
i.e., the number of edges, eligible for the transmission of the virus decreases with an increasing percentage of
infected individuals being diagnosed (Fig. 7A). The consequence is fewer opportunities for disease spreading
and hence the number of new infections (orange error bar in Fig. 7B) decreases, too.

3.4. SSATAN-X speeds up computation time

Next, we analyzed the run time of SSATAN-X in comparison to SSA for different populations sizes (number
of nodes). To this end, we took the model settings and parameters as described in the beginning of the Results
section.

Simulations were started with fixed number of infected individuals {I = 20}. The simulation results pre-
sented in Figure 8A show that the run times increase with increasing population size. However, for the utilized
parameter setting, the runtime of SSATAN-X is about 100-fold less compared to the run time of SSA.

Next, we wanted to assess the runtime performance as a function of the utilized parameters. To that end,
we chose homogeneous contact dynamics rates λ+i , λ

−
i across the population (all individuals having the same

rates). This allows to assess how the run time changes as a function of the probability that transmission occurs
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SSA and SSATAN-X respectively. Shaded areas represent the corresponding areas encompassed
by the mean ± standard deviation.

on a contact edge before it dissolves. This probability is given by
γ

γ + (λ−)2
, where γ is the transmission rate

on a contact edge and (λ−)2 is the rate of loosing an existing edge. In the analysis, we increased λ+ and λ−

proportionally (the average number of contacts stays the same, but their lifetime shortens).
The run time of both SSA and SSATAN-X for performing 103 simulations for each parameter set is shown

in Figure 8B. As can be seen, when the relation
γ

γ + (λ−)2
is close to 1, i.e. transmission is always bound to

happen before an edge dissolves, SSA may be slightly faster than SSATAN-X. The reason is that the time-
interval between two epidemic events becomes so small that the bulk update of the contact dynamics reduces to
the SSA. Noteworthy, such models would actually not require to model separate contact dynamics altogether,
making this example a bit artificial (more on the utility of different modelling approaches in the Discussion
section).

When the relation
γ

γ + (λ−)2
decreases, i.e. the contact dynamics being much faster than the epidemic

dynamics, the run time of SSATAN-X becomes superior over SSA. Therefore, with low transmission rates and
fast contact dynamics, SSATAN-X avoids any computational overheads from the contact dynamics and only
takes their net effect on the epidemiological dynamics into account by bulk updating. On the contrary, SSA
requires to execute each reaction (contact and epidemic) individually.

In summary, SSATAN-X is computationally more efficient than SSA. The run time of both algorithms scales
with the population size and the “boost-factor” of SSATAN-X is preserved across different population sizes.
However, the computational “boost-factor’ of SSATAN-X increases, when the contact dynamics are fast in
comparison to the epidemic dynamics.

3.5. Comparison with parallel updating methods

Many softwares for simulating spreading dynamics on networks have recently been introduced as a response to
the ongoing SARS-CoV-2 pandemic, such as OpenABM-Covid19 [30] or CovaSim [39]. Some of these softwares
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γ

γ + (λ−)2
, with γ being the transmission rate and λ− being the rate of edge disassembling, can

be interpreted as the probability of transmitting an infection before the contact is dissolving.
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allow to consider adaptive networks (compare Fig. 1). For simulation, these softwares frequently use parallel
updating schemes, where a constant time-step is pre-selected by a user or hard-coded in the software. In each
time step, updates to both the contact network and epidemic state are performed. For example, the popular
CovaSim software [39] uses a fixed time step of one day to perform parallel updates.

To compare SSATAN-X with these inexact methods, we implemented a parallel updating scheme (Appendix
S3) and tested the accuracy of parallel updating schemes for different time steps on the previously introduced
model. As the smallest time step for parallel updating, we used dt= 0.0001, i.e. smaller than the average time-
step of SSATAN-X (dt= 0.062). i.e.: This should, on average, lead to less than a single epidemiological event
and thus should lead to fairly accurate results with parallel updating.

As can be seen in Figure 9A–C, SSA (exact simulation) and SSATAN-X produce almost indistinguishable
results with regards to the average number of infected, diagnosed and susceptible individuals (red and blue lines).
Corresponding statistical ranges (mean ± one standard deviation) of the predictions are shown in Figure 9D–F.
For the smallest considered time steps (dt= 0.0001 and dt= 0.1) parallel updating is relatively accurate, but
nonetheless slightly overestimates the average number of infected (and diagnosed infected) individuals. This
error propagates and it could be envisioned to worsen significantly over very long simulation horizons. The
reason for this behaviour lies in the discontinuous contact dynamics that we considered: i.e. upon diagnosis,
all edges are lost. In parallel updating these edges will remain lost until the next time step, whereas in reality
(as modelled by SSA, SSATAN-X) some new (transmission eligible) edges may have arisen. This shows that
SSATAN-X can even handle numerically very challenging dynamics and can consider events as they occur (for
example: a person taking a diagnostic test just before making the decision to enter a large social event).

For larger time steps dt= 0.2, dt= 0.5, which imply that several epidemiological events are executed in
parallel (approx. 2–3 for dt= 0.2), the results from parallel updating become wrong altogether. This can be
highly problematic for parallel updating schemes, which fix the time step throughout simulation: i.e. while
the chosen time step in parallel updating schemes may be sufficient at the start of an outbreak simulation
(few transmission occur), after some time, when the epidemic expanded, the same time step may imply several
epidemic events, and this could lead to incorrect predictions. Thus, there is no guarantee for an arbitrary chosen
time step, that simulations using parallel updating are correct for epidemics that unfold on adaptive networks.

For a more close inspection, we also computed the Kolmogorov-Smirnov Test (KST) statistics for the number
of infected, diagnosed and susceptible individuals in Figure 10, compared to SSA. Note that this is assessment is
different from Figure 4, which only assessed the contact dynamics (degree distribution). Here, we compare the
statistical difference with regards to the epidemic states (susceptible, infected, diagnosed). As can be seen, the
value of the KST statistics can be markedly higher for the parallel updating scheme than for SSATAN-X. For
parallel updating with the smallest step sizes (dt= 0.0001), the KST statistic is of similar magnitude compared
to SSATAN-X. For dt= 0.1, it is for the majority of depicted time points (0.5, 1, ..., 5) larger than the KST
statistic of SSATAN-X (8/10, 9/10 and 5/10 for infected, diagnosed and susceptibles). For dt= 0.2 and dt= 0.5
the derived distribution is clearly different from SSA, hence simulation results become inaccurate.

For the utilized model and the smallest time step dt= 0.0001 parallel updates are about 10 times slower than
SSATAN-X, which required about 1300 milliseconds for 1000 simulations on an Quad-Core Intel i7 laptop with
2,5 GHz. For larger time steps (dt= 0.1, 0.2 and 0.5), computational run times were half of that of SSATAN-X,
at the cost of accuracy.

4. Discussion

Spreading of infectious disease can occur when individuals encounter in contacts that are relevant for the
route of transmission of a pathogen. These contacts can be sexual contacts for sexually transmitted disease, or
spatial proximity for airborne infections. In order to more realistically model spreading of infectious diseases,
different network models have been proposed in the past [28]. There are important circumstances in which the
dynamic process of the contact network and the epidemic spreading are worth considering. Roughly speaking,
this is when the two dynamic processes are on similar timescales. For example, if the contact dynamics are
much slower than the epidemic dynamics, such that transmission is bound to happen whenever there is a
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Figure 9. Comparison of simulation results from parallel updating schemes vs.
SSATAN-X. A.–C. Central tendency of predictions: Average number of infected, diagnosed
and susceptible individuals after 1000 SSATAN-X or parallel updating simulations with different
time steps. D.–F. Statistical range of predictions: The dashed lines denote the levels of the
average infected, diagnosed and susceptible plus (upper line), or minus (lower line) one standard
deviation after 1000 SSATAN-X or parallel updating simulations with different time steps.

contact, it is sufficient to only consider the contact dynamics. Also, if the network changes so slowly that
it is likely to remain the same throughout an outbreak, then a even static network approximation would be
appropriate [19]. However, if the network changes over a similar timescale to the node-to-node progression rate
of the infection, then the changing network can change the course of the contagion, and it is important to
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include those changes in the analysis. A particular case, that we address with SSATAN-X is the case where
the temporal processes of the contact network and epidemic interact not only in timescale, but directly: The
infection events themselves change the network structure, which then impacts further disease spread. These
more complex models, where a contact network structure changes dynamically in response to the dynamics
of the spreading process, are often termed adaptive networks [27]. These types of models may therefore allow
to realistically consider behavioural changes that occur when individuals become aware of their infection and
self-isolate [48], or experience debilitating symptoms.

In this article, we introduce SSATAN-X, an efficient and exact algorithm to simulate effective spreading
dynamics on adaptive networks.

SSATAN-X takes advantage of the fact that for any model, where it is worth considering both contact
dynamics and epidemic dynamics, the former must be faster than the latter (i.e. not every contact leads to
transmission). Instead of performing detailed simulations of the underlying contact dynamics, the core idea of
SSATAN-X is to only consider the effect that the underlying contact dynamics have on the epidemic dynamics.
For this purpose, SSATAN-X uses bulk updates of the contact structure between epidemic events, such as
disease transmission, diagnosis or death (Fig. 2).

In Figure 3, we show that the proposed bulk-updating conserves the statistical properties of the underlying
contact network at times that are relevant to the epidemic dynamics. Because the statistics of the underlying
contact network at times that are relevant to the epidemic dynamics are preserved, the statistics related to the
firing of the next epidemic event (Fig. 5) are preserved, too. Consequently, the resulting epidemic dynamics are
statistically correct, Figures 6 and 7.

However, the bulk updating avoids computational overheads from updating contact edges one-by-one. There-
fore, depending on the choice of parameters, SSATAN-X can speed up computation time quite significantly
in comparison to exact methods like the stochastic simulation algorithm (SSA) without any loss in simulation
accuracy, Figure 8. The speed up factor critically depends on the relation of the contacts dynamics to the
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transmission dynamics. For example, if contacts generally do not result in transmission, computational speed
up with SSATAN-X will be considerable. On the other hand, if transmission will always occur on a contact edge
before it dissolves, the computational speed up will only be moderate or even absent. In Figure 8B, we expressed
this dependency as γ/(γ + (λ−)2), where (λ−)2 denotes the rate of loosing an edge and γ is the transmission
rate along a contact edge.

Note that the transmission rate γ denotes a lumped parameter, that can be further decomposed to allow
for more sophisticated modelling, realistic parameterization and model extensions: For example, if exposures
on a contact edge occur with rate re and if the exposures are of the same type, then the transmission rate is
just a scaled variant of the exposure rate, i.e. γ = re · ptr|e, where ptr|e is the probability that a transmission
occurs for a single exposure event e. Notably, for many infectious diseases and types of exposures ptr|e is readily
known [6, 44, 52] and the effects of pharmaceutic [16, 18] or non-pharmaceutic interventions [55, 56] on ptr|e
can be quantified, allowing for model extensions that can link within-host pathogen dynamics to the spreading
dynamics at the population level.

Taken together, the lumped transmission rate γ is a function of the transmission probability per exposure
event ptr|e, as well as the frequency of exposures re when individuals are in contact. For many infectious diseases
and types of contacts it may be argued that the ratio γ/(γ + (λ−)2) is much smaller than one; i.e., most
transient contacts may not result in pathogen transmission. Behavioral changes, such as distancing, isolation
or quarantine, may further reduce the transmission rate by reducing re, whereas pharmaceutic (vaccination,
prophylaxis, treatment) [10, 26, 51] or non-pharmaceutic interventions (e.g. mask wearing for airborne-, and
condom usage for sexually transmitted infections) [42, 59] may lower ptr|e in a static or time-dependent manner.

In our examples, we used a very simple model to demonstrate that the proposed algorithm works (proof-
of-principle). In the utilized model and in the algorithm to simulate spreading on this model we differentiate
between (i) epidemic dynamics: For example, reactions that change the population (birth, death) or the state
of the considered population (susceptible, infected, diagnosed) and (ii) contact dynamics: those reactions that
affect the contact network of individuals in the populations. Note that in principle, the algorithmic idea applies
to any model that can be set up this way, no matter which exact reactions belong to each of these kinds. With
regards to the presented model, two adaptions are needed: the computation of the upper bound BTL and the
computation of a`(t) in line 10 of Algorithm 2.

In the examples used throughout, we considered reaction rates (for R and A) to be constants. However,
it is also possible to consider time-dependent rates: For example, the transmission rate γ may be a function
of time, due to some time-dependent pharmacokinetic effect of a prophylaxis [15, 17, 60], or depending on
how long an individual is being infected or contagious [55]. These time-dependent effects may be incorporated
when determining the upper bound B in Algorithm 2 (Appendix S2). In fact, in Supplementary Figure S1,
we extended the utilized model, by including a time-dependent force of transmission γ(t). Here, we used a
’sine’ function, e.g. to represent seasonality, but any time-dependent function is possible. As noted above, this
requires two adaptations: when computing BTL , the force of infection ’γ’ is replaced by max

s

(
γ(s)

)
for some

s ∈ [t, t + TL]. After sampling the time step ∆t ∼ Exp(BTL) and progressing to t ← t + ∆t, the actual γ(t)
needs to be calculated, and based on it a`(t).

Note that the aforementioned example can readily reflect dynamic (time-dependent) infection control that
affects the transmission rate, such as ’mask-wearing’ for airborne infections, or vaccination and prophylaxis.
If some time-dependent control of contacts is applied, this can be implemented two ways: In case of abrupt
changes, i.e. contact restriction being on/off at a particular time, the implementation would be straight forward:
The look-ahead time horizon TL is chosen such that it coincides with the change in the contact rates. At the
rejection step (line 6 in Algorithm 2) the rates of establishing new contacts are changed accordingly, e.g. from
the rates before to after contact restrictions. If the rate of establishing new contacts λ+(t) was an arbitrary
time-continuous deterministic function (e.g. a ’sine’ function or the like), the computation of BTL needed to
be adapted. This can be done, by using the time dependent λ+(t) in equations (1) and (2) and equation (7)
in the Appendix S2 “Determination of Upper Bound”. The equations (1)–(2) and equation (7) could be solved
numerically using standard ODE solvers to calculate all variables in equation (15) Appendix S2 “Determination
of Upper Bound”.
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Note that if continuous-time functions were considered for either contact or epidemic reactions, the SSA
algorithm (or parallel updating schemes) would be numerically inexact, since it is designed for simulating
homogeneous Markov Processes.

Lastly, high-resolution networks representing e.g. an agent’s mobility in the physical space can also be sim-
ulated using the proposed algorithm. Spatial movement and proximity can be modeled by having individual
contact rates for pairs of nodes j,k. For example: In the manuscript, we considered reaction r+jk fires with rate

e′jk · λ
+
j · λ

+
k . i.e., we did not regard spatial proximity or movement and any two nodes can, in principle, come

into contact. We did this, because we focus on presenting the basic algorithm, rather than complex modelling.
However, if instead r+jk fires with rate e′jk · λ

+
jk, where λ+jk considers whether the two individuals j,k meet on

their way to work or work in the same premises, spatial proximity can be modeled. Note that the parameters
for the contact dynamics may, in addition, be time-dependent, as outlined above to reflect complex scenarios,
e.g.: ‘individuals j and k are likely to meet between 9am and 10am on their way to work and not thereafter or
before’.

Interestingly, if these spatial contact dynamics are NOT adaptive they may actually be pre-computed and

plugged into Algorithm 2 to directly compute BTL : e.g., BTL(S → I) = γ ·
∑
i∈I
∑
j∈S

∫ TL
0

δij(s) ds, where
δij(s) takes the value 1 if an an edge exists at time s.

In our paper, we use the Anderson tau-leap algorithm (Algorithm 3) [1] to compute the bulk updates of the
contact dynamics between two epidemiological events. It is also possible to use other tau-leap based approaches,
as summarized in [45], however, we used the Anderson tau-leap algorithm, because it does guarantee accuracy
through step size adaptation.

While τ−leaping may be considered as a stochastic simulation algorithm that has some analogies to explicit
(first order) Euler methods for solving systems of ordinary differential equations (ODE) [8], another possibility
for the bulk updating of the contact dynamics is to adapt higher-order schemes with adaptive step sizes that
have been proposed in the context of ODEs [53]. For example, the Runge-Kutta-Fehlberg method [20] could
be used to adapt step sizes for the bulk updating. A clear advantage of higher-order schemes in the context of
bulk-updating the contact network is the fact that larger step sized may be chosen that preserve accuracy [3].
In the future, we will further improve SSATAN-X by incorporating these higher-order approximation schemes.

In our paper we consider finite populations. In finite populations, the maximum possible amount of contacts
of the each individual i has an upper theoretical limit of N − 1 and a complete graph would have N · (N − 1)/2
edges. This gives us a straightforward way to estimate the total number of edges available for deletion or addition
at any time point t: The number of edges available for deletion equals the number of edges present E(t), whereas
the number of edges available for addition is given by N · (N − 1)/2 − E(t) or in other words, the number of
edges in a complement graph. Note that for infinite populations the number of edges that can be deleted is still
given by E(t), whereas, for adding edges one may simply abandon the ’complement graph’ approach, making
the algorithm more efficient.

Some authors have also proposed more restrictive models for the number of contacts [40]. Some of these
concepts may be inspired by the popular Dunbar number [13, 14], which is rooted in the presumption that
individuals may not maintain stable social relationships with more than 150 other individuals. Notably, Dunbar’s
presumption has not been without critique [43].

However, contact networks may exist, in which the maximal number of contacts of an individual is less
than the number of available individuals in the network. For example, Schmid and Kretzschmar [40] describe an
individual-based model, in which each individual has an upper-limit capacity regarding the number of concurrent
sexual partnerships, with pair formation and separation simulated as a dynamic processes, where each individual
has his/her own probabilities of contact formation and separation drawn from an appropriate distribution. To
model these kinds of restrictive contact dynamics with SSATAN-X, the number of edges available for deletion
remains unaffected, while the estimation of the number of edges available for addition becomes more involved:
Depending on the order of the addition and remaining contact capacities, there may be several outcomes with
different amounts of edges possible to be added. For example, in a network where all nodes but one have
exhausted their capacities, no more edges can be added without violating the contact constraints. Therefore,
it becomes necessary to estimate a “worst scenario” case, i.e. a contact bulk update that resulted in the least
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overall number of edges. To do this, the Havel-Hakimi algorithm [29] with modifications that consider existing
edges E(t) may be employed.

5. Conclusion

We introduced SSATAN-X, an efficient stochastic algorithm to simulate spreading processes on adaptive
networks. The core idea of SSATAN-X is to perform bulk updates of contact dynamics, to accurately estimate
their net effect on the epidemic dynamics. SSATAN-X may be extended to allow for more detailed modelling
of interventions on pathogen transmission, as well as regarding the contact dynamics. The epidemic dynamics
are propagated using EXTRANDE, while the bulk updating of contact dynamics has been implemented using
Anderson-Tau leaping [2]. However, any method that preserved the statistical properties of the underlying
contact network may, in principle, be used.

6. Supplementary Material

Appendix S1. Proof of exactness of Algorithm 2 (EXTRANDE). In the Supplementary text, we proof
that EXTRANDE is an exact algorithm if a constant B exists, such that B ≥

∑
` a`(t) for all t ∈ [t1, t1 + L].

Appendix S2. Determination of upper bound BTL . In the Supplementary text, the determination of
the upper bound for the sum of propensities of the epidemic dynamics is described.

Appendix S3. Details on the implementation of parallel updates. In the Supplementary text, details
of the implementation of the parallel updates scheme are given.

Figure S1. SSATAN-X simulations with time-dependent force-of-infection γ(t). The supplementary
figure shows SSATAN-X simulations with time-dependent parameters. Panel A. Time dependent force-of-
infection parameter γ(t). Panels in B. Resultant epidemic dynamics using SSATAN-X. Except for γ(t),
parameters were chosen identical as those outlines in the Results section.
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